An Optimized Calcium Alginate Microcapsule for Mesenchymal Stem Cells Encapsulation

Authors

  • Parisa Rahnamay Moshtagh
  • Rana Imani
  • Shahriar Hojjati Emami
  • Ali Mohamad Sharifi

DOI:

https://doi.org/10.22034/JATE.2018.21

Keywords:

Cell encapsulation; Hydrogel; Alginate; Mesenchymal stem cell

Abstract

Background: Recent studies suggest that the three dimensional (3D) cellular environment plays major roles in cell function. Hydrogel cell encapsulation is a method to provide a 3D culture system which controls cell fate and can be used as a drug delivery tool for continuous delivery of therapeutic products.

Methods and Materials:  In order to provide an optimized three dimensional cellular environment for mesenchymal stem cell (MSC) encapsulation, various concentrations of alginate hydrogel (0.8, 1.2% and 1.6% w/v) and calcium ions (102 and 153 mM) were used. MSC viability was assessed through trypan blue staining, sub-G1 analysis, and fluorescent microscopy. Structural porosity and mechanical properties of hydrogel capsules were examined.

Results: Encapsulated MSCs within 1.2% concentration (w/v) of alginate showed the highest level (84.8% ± 1.77) of MSC viability. Samples with 1.2% w/v alginate in 102 and 153mM concentrations of calcium chloride bath as well as 1.6% alginate in 102 mM CaCl2 yielded integrated cross link networks and interconnected porous structure which was confirmed by scanning electron microscopy.

Conclusion: Findings of this study indicate that the sample with 1.2% alginate in 153mM CaCl2 is a suitable candidate for using in MSC encapsulation.

References

1.Vija, L., D. Farge, J.F. Gautier, P. Vexiau, C. Dumitrache, A. Bourgarit, F. Verrecchia, and J. Larghero. (2009) Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes. Diabetes Metab.35: 85-93.
2. Robertson, R.P. (2004) Islet Transplantation as a Treatment for Diabetes - A Work in Progress. N. Engl. J. Med. 350: 694-705.
3. Black, S.P., I. Constantinidis, H. Cui, C. Tucker-Burden, C.J. Weber, and S.A. Safley (2006) Immune responses to an encapsulated allogeneic islet β-cell line in diabetic NOD mice. Biochem.Biophys. Res. Commun. 340: 236–243.
4. Jones, P.M., M.L. Courtney, C.J. Burns, and S.J. Persaud (2008) Cell-based treatments for diabetes. Drug Discov.Today 13: 888-893.
5. Hernández, R.M., G. Orive, A. Murua, and J.L. Pedraz (2010) Microcapsules and microcarriers for in situ cell delivery.Adv. Drug Deliv.Rev. 62: 711-730.
6. Wang, T., I. Lacík, M. Brissová, A.V. Anilkumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, and A.C. Powers (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat. Biotechnol. 15: 358 – 362.
7. Teramura, Y., H. Iwata (2009) Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials 30: 2270–2275.
8. Orive, G., A.R. Gascón, R.M. Hernández, M.Igartua, and J.L. Pedraz (2003) Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol. Sci.24: 207-210.
9. Lu, H.F., E.D. Targonsky, M.B. Wheeler, and Y.L. Cheng (2007) Thermally Induced Gelable Polymer Networks for Living Cell Encapsulation. Biotechnol.Bioeng. 96: 146-155.
10. Nafea, E.H., A. Marson, L.A. Poole-Warren, and P.J. Martens (2011) Immunoisolating semi-permeable membranes for cell encapsulation: Focus on hydrogels.J. Control Release V. 154: 110-122.
11. Limbert, C., and J. Seufert (2009) In vitro (re)programming of human bone marrow stromal cells toward insulin-producing phenotypes. Pediatr. Diabetes 10: 413–419.
12. Ben-Ami, E., S. Berrih-Aknin, and A. Miller (2011) Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmunity Rev. 10: 410–415.
13. Krampera, M., A. Pasini, G. Pizzolo, L. Cosmi, S.Romagnani, and F. Annunziato(2006) Regenerative and immunomodulatory potential of mesenchymal stem cells.Curr.Opin.Pharmacol. 6: 435-441.
14. Tyndall, A., U.A. Walker, A. Cope, F. Dazzi, C. De Bari, W. Fibbe, S.Guiducci, C. Jorgensen, K. Le Blanc, F. Luyten, D. McGonagle, I. Martin, C. Bocelli-Tyndall, G. Pennesi, V. Pistoia, A. Uccelli, N. Wulffraat, and M. Feldmann (2007) Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis. Res. Ther. 9: 301-310.
15. Batorsky, A., J. Liao, A.W. Lund, G.E. Plopper, and P.J. Stegemann (2005) Encapsulation of Adult Human Mesenchymal Stem Cells Within Collagen-Agarose Microenvironments.Biotechnol.Bioeng. 92: 492-500.
16. Jongpaiboonkit, L., W.J. King, G.E. Lyons, A.L. Paguirigan, J.W. Warrick, D.J. Beebe, and W.L. Murphy (2008) An adaptable hydrogel array format for 3-dimensional cell culture and analysis. Biomaterials. 29: 3346-3356.
17. Hunt, N.C., and L.M. Grover (2010) Cell encapsulation using biopolymer gels for regenerative medicine .Biotechnol.Lett. 32: 733-742.
18. Zhang, X., Y. Xie, C.G. Koh, and L.J. Lee (2009) A novel 3-D model for cell culture and tissue engineering. Biomed.Microdevices11: 795–799.
19. Orive, G., S.K. Tam, J.L. Pedraz, and J.P. Halle´ (2006) Biocompatibility of alginate–poly-L-lysine microcapsules for cell therapy. Biomaterials 27: 3691–3700.
20. Huang, K.S., M.K. Liu, C.H. Wu, Y.T. Yen, and Y.C. Lin (2007) Calcium alginate microcapsule generation on a microfluidic system fabricated using the optical disk process .J. Micromech. Microeng.17: 1428-1434.
21. Nunamaker, E.A., K.E. Purcell, R.D. Kipke (2007) In vivo stability and biocompatibility of implanted calcium alginate disks. J. Biomed. Mater. Res. A. 83: 1128-1137.
22. Tu, J., S. Bolla, J. Barr, J. Miedema, X. Li, and B. Jasti (2005) Alginate microparticles prepared by spray–coagulation method: Preparation, drug loading and release characterization". Int. J. Pharm. 303: 171–181.
23. LeRoux, M.A., F. Guilak, and L.A. Setton (1999) Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. J. Biomed. Mater. Res. 47: 46-53.
24. Wang, N., G. Adams, L. Buttery, F.H. Falcone, and S. Stolnik (2009) Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J. Biotechnol. 144: 304-312.
25. Bernacki SH, Wall ME, Loboa EG (2008) Isolation of human mesenchymal stem cells from bone and adipose tissue. Methods Cell Biol. 86: 257–258.
26. Zhu, J.H., X.W. Wang, S. Ng, C.H. Quek, H.T. Ho, X.J. Lao, and H. Yu (2005) Encapsulating live cells with water-soluble chitosan in physiological conditions. J. Biotechnol. V. 117: 355-365.
27. Nafea, E.H., A. Marson, L.A. Poole-Warren, and P.J. Martens (2011) Immunoisolating semi-permeable membranes for cell encapsulation: Focus on hydrogels.J. Control Release. V. 154: 110-122.
28. Banerjee, A., M. Arha, S. Choudhary, R.S. Ashton , S.R. Bhatia , D.V. Schaffer , and R.S. Kane (2009) The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells”. Biomaterials. 30: 4695-4699.
29. Cheah, P.S., K.H. Ling , K.A. Crouse , and R. Rosli (2007) Characterization of the S-benzyldithiocarbazate effects on cell proliferation and oncogene expression in human breast cancer cells. J. Med. Biol. Sci. 1: 1-7.
30. Hao, T., N. Wen, J.K. Cao, H.B. Wang, S.H. Lü, T. Liu, Q.X. Lin, C.M. Duan, and C.Y. Wang. (2010) The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis Cartilage.18: 257-265.

Downloads

Published

2019-12-10

How to Cite

Rahnamay Moshtagh , P. ., Imani, R. ., Hojjati Emami, S. ., & Sharifi, A. M. . (2019). An Optimized Calcium Alginate Microcapsule for Mesenchymal Stem Cells Encapsulation. The Journal of Applied Tissue Engineering, 5(1), 27–36. https://doi.org/10.22034/JATE.2018.21

Issue

Section

Original Articles