Fabrication of PLGA Conduit for Peripheral Nerve Regeneration

Authors

  • Nastaran Doubra
  • Afsaneh Amiri
  • Masoumeh Foroutan koudehi
  • Zahra Jamalpoor
  • Ali Imani Fooladi
  • Mohammad Reza Nourani

DOI:

https://doi.org/10.22034/JATE.2014.5

Keywords:

PLGA, Nanosilver, Nerve Growth Conduit, Peripheral Nerve Regeneration

Abstract

PLGA conduits are widely used experimentally as scaffold for the reconstruction of damaged peripheral nerves. But post traumatic and post operation infections are the most common complications. Silver nanoparticles, as potent antimicrobial agent, have diverse medical applications ranging from silver based wound dressings to silver coated implants. In this study, we fabricated and characterized PLGA/Nanosilver scaffolds for peripheral nerve regeneration and evaluated their antibacterial and cytotoxicity behavior. The results showed that antibacterial efficacy increases with the increase in concentration of silver nanoparticle. This work suggests that nanosilver coating of PLGA scaffolds can increase their infection resistancy and potentially improve peripheral nerve regeneration in a dose dependent menner.

References

1. Wolford LM. Autogenous nerve graft repair of the trigeminal nerve. Oral Maxillofac Surg Clin North Am. 1992; 4: 447–457.
2. Mackinnon SE, Dellon AL. Surgery of the Peripheral Nerve. New York: Thieme, 1988; 115-119.
3. Li X, Cai Sh, Liu B, Xu Zh, Dai X, Ma K, Li Sh, Yang L. Characteristics of PLGA–gelatin complex as potential artificial nerve scaffold. Colloids and Surfaces B: Biointerfaces. 2007; 57: 198–203.
4. Amilo S, Yanez R, Barrios RH. Nerve regeneration in different types of grafts: experimental study in rabbits. Microsurgery. 1995; 16: 621-630.
5. Bertelli JA, Orsal D, Mira JC. Median nerve neurotization by peripheral nerve grafts directly implanted into the spinal cord: anatomical, behavioural and electrophysiological evidences of sensorimotor recovery. Brain Res. 1994; 644: 150-159.
6. Nikkhah G, Carvalho GA, Samii M. Nerve transplantation and neurolysis of the brachial plexus after post-traumatic lesions. Orthopade. 1997; 26: 612-620.
7. Chang JY, Lin JH, Yao CH, Chen JH, Lai TY, Chen YS. In vivo evaluation of a biodegradable EDC/NHS-cross-linked gelatin peripheral nerve guide conduit material. Macromol Biosci. 2007; 7: 500-7.
8. Lu L, Garcia CA, Mikos AG. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res. 1999; 46(2): 236–244.
9. Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix.J Biomed Mater Res. 1999; 46(1): 60–72.
10. Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, Mukai K, Griffith LG, Vacanti JP. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg. 1998; 228(1): 8–13.
11. Ma PX, Schloo B, Mooney D, Langer R. Development of biomechanical properties and morphogenesis of in vitro tissue engineeredcartilage. J Biomed Mater Res. 1995; 29(12): 1587–1595.
12. Wake MC, Patrick CW, Mikos AG. Pore morphology effects on thefibrovascular tissue growth in porous polymer substrates. Cell Transplant. 1994; 3(4): 339–43.
13. Sharkawy AA. Engineering the tissue which encapsulates subcutaneous implants. II. Plasma-tissue exchange properties. J BiomedMater Res. 1998; 40: 586–97.
14. Frazza EJ, Schmitt EE. A new absorbable suture. J Biomed MaterRes. 1971; 1: 43.
15. Gemmell CG, Edwards DI, Frainse APJ. Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK. J Antimicrob Chemother. 2006; 57: 589–608.
16. Klasen HJ. A historical review of the use of silver in the treatmentof burns. II. Renewed interest for silver. Burns. 2000; 26: 131–8.
17. Castellano JJ, Shafii SM, Ko Donate FG, Wright TE, Mannari RJ.Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J. 2007; 4: 114–22.
18. Ip M, Lui SL, Poon VKM, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiob. 2006; 55: 59–63.
19. Leaper DL. Silver dressings: their role in wound management. IntWound J. 2006; 3: 282–94.
20. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater. 2000; 52: 662–8.
21. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface. 2007;275: 177–82.
22. Morones JR, Elechiguerra JL, Camacho A, Ramirez JT. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16: 2346–53.
23. Song HY, Ko KK, Oh LH, Lee BT. Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cells Mater.2006; 11: 58.
24. Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng.2005; 90: 59–63.
25. Mehrab R, Imani Fooladi AA, Amir Mozafari N, Nourani MR. A Study on the Antibacterial Activity of Nanosilver Colloidal Solution against ESBL-Producing Pseudomonas aeruginosa. Current Nanoscience. 2012; 8(5): 1-5.
26. Hafezi F, Hosseinnejad F, Imani Fooladi AA, Mohit Mafi S, Amiri A, Nourani MR. Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J Mater Sci Mater Med. 2012; DOI: 10.1007/s10856-012-4722-3
27. Kumar PT, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R. Preparation and characterization of novel b-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydrate Polymers. 2010; 80: 761–767
28., Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chu PK. Antibacterial nano-structured titania coating incorporated with silvernanoparticles. Biomaterials. 2011; 32: 5706-5716.
29. Shahbazzadeh D, Ahari H, Motalebi AA, Anvar AA, Moaddab S, Asadi T, Shokrgozar MA, Rahman-Nya J. In vitro effect of Nanosilver toxicity on fibroblast and mesenchymal stem cell lines. Iran J Fish Sci. 2011; 10(3) : 487-496.
30. Chang CJ, Hsu SH. The effect of high outflow permeability in asymmetric poly(DL-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Biomaterials. 2006; 27: 1035–1042.
31. Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N. Preparation, characterization and antimicrobial activity of abio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol. 2011; 49: 188–193.
32. Tsai YC, Hsu PC,Lin YW, Wu TM. Silver nanoparticles in multiwalled carbonnano tube–Nafionfor surface-enhanced Raman scattering chemical sensor. Sensors and Actuators B. 2009; 138: 5–8.
33. Li L, Li Y, Li J, Yao L. Antibacterial Properties of Nanosilver PLLA Fibrous Membranes. J Nanomater. 2009; 2009:1-5.
34. Park EJ, Yi J, Kim Y,Choi K ,Park K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology inVitro. 2010; 24: 872–878.

Downloads

Published

2019-12-05

How to Cite

Doubra, N., Amiri, A. ., Foroutan koudehi , M. ., Jamalpoor, Z. ., Imani Fooladi, A., & Nourani , M. R. (2019). Fabrication of PLGA Conduit for Peripheral Nerve Regeneration. The Journal of Applied Tissue Engineering, 1(1), 7–13. https://doi.org/10.22034/JATE.2014.5

Issue

Section

Original Articles